High Accuracy Computation of Rank-constrained Fundamental Matrix by Efficient Search

نویسندگان

  • Yasuyuki SUGAYA
  • Kenichi KANATANI
چکیده

High Accuracy Computation of Rank-constrained Fundamental Matrix by Efficient Search Yasuyuki SUGAYA† and Kenichi KANATANI†† † Department of Information and Computer Sciences, Toyohashi University of Technology, Toyohashi, Aichi, 441–8580 Japan †† Department of Computer Science, Okayama University, Okayama, 700–8530 Japan E-mail: †[email protected], ††[email protected] Abstract A new method is presented for computing the fundamental matrix from point correspondences over two images: its singular value decomposition (SVD) is optimized by the Levenberg-Marquard (LM) method. There is no need for tentative 3-D reconstruction. The accuracy of the solution is compared with the theoretical bound (the KCR lower bound).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Accuracy Computation of Rank-Constrained Fundamental Matrix

A new method is presented for computing the fundamental matrix from point correspondences: its singular value decomposition (SVD) is optimized by the Levenberg-Marquard (LM) method. The search is initialized by optimal correction of unconstrained ML. There is no need for tentative 3-D reconstruction. The accuracy achieves the theoretical bound (the KCR lower bound).

متن کامل

An Energy-efficient Mathematical Model for the Resource-constrained Project Scheduling Problem: An Evolutionary Algorithm

In this paper, we propose an energy-efficient mathematical model for the resource-constrained project scheduling problem to optimize makespan and consumption of energy, simultaneously. In the proposed model, resources are speed-scaling machines. The problem is NP-hard in the strong sense. Therefore, a multi-objective fruit fly optimization algorithm (MOFOA) is developed. The MOFOA uses the VIKO...

متن کامل

Fast Nonnegative Matrix Factorization with Rank-one ADMM

Nonnegative matrix factorization (NMF), which aims to approximate a data matrix with two nonnegative low rank matrix factors, is a popular dimensionality reduction and clustering technique. Due to the non-convex formulation and the nonnegativity constraints over the two low rank matrix factors (with rank r > 0), it is often difficult to solve NMF efficiently and accurately. Recently, the altern...

متن کامل

Calculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms

The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...

متن کامل

Estimating the Fundamental Matrix via Constrained Least-Squares: A Convex Approach

ÐIn this paper, a new method for the estimation of the fundamental matrix from point correspondences is presented. The minimization of the algebraic error is performed while taking explicitly into account the rank-two constraint on the fundamental matrix. It is shown how this nonconvex optimization problem can be solved avoiding local minima by using recently developed convexification technique...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007